Non-point nitrogen sources in the Great Bay Watershed

Michelle L. Daley Dr. William H. McDowell UNH Dept. Natural Resources & the Environment NH Water Resources Research Center

Nitrogen Issues in Great Bay – November 8, 2012 – Madbury, NH







## Outline

- Brief overview of Nitrogen (N) impairment and proposed total N (TN) reductions
- N budget for the Lamprey watershed
- Assessment of non-point nitrogen in the Lamprey and Oyster sub-watersheds
- Implications for managing N
- Current research projects examining non-point nitrogen sources and transport pathways

## **Great Bay**

- NH's most significant estuary
- Loss of Eelgrass, clams and Oysters
- Long-term increase in nitrogen concentrations
- Low dissolved oxygen (DO)
- **Decreased water clarity**



Photo credit: Dr. Fred Short

New Hampshire Department of Environmental Services

### Numeric Nutrient Criteria for the Great Bay Estuary

Nutrient Criteria

To protect: DO (0.45 mg TN/L) Eelgrass (0.30 mg TN//L) June 2009





Nitrogen Impairments for Great Bay Estuary

Violation of Clean Water Act



### Eutrophication Phosphorus Nitrogen Estuaries and Lakes These nutrients **Coastal zones** cause an increase in phytoplankton. Algal Bloom Sediments from land block sunlight. Algae Die Phytoplankton grow on the leaves of SAV. Oxygen SAV Die Decay

Lose: Food, Habitat & Oxygen Production

SAV – Submerged Aquatic Vegetation e.g. Eelgrass http://www.fiu.edu/~envstud/labs/imageJ1B.JPG



## Eutrophication-associated dead zones and the human footprint



Diaz and Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926-929.



## Great Bay Watershed



- Home to 22% of NH's population
- Drains 2 towns (42 in NH 10 in ME)
- Mostly forested, no big agriculture and some people
- Point sources 18 WWTF
  - 10 discharge directly to estuary
  - 8 discharge to tributaries
- Non-point N sources
  - Septic systems and leaky sewer lines
  - Fertilizers
  - Pets and livestock
  - Atmospheric deposition
  - Wetlands, forests and soils



## Great Bay Nitrogen (N) Impairment

- 2003-2008 TN load to Great Bay
  - 27% Point Sources (WWTFs)
  - 73% non-point point sources
- July September WWTFs contribute more than 50% of the TN load to Great Bay
- 31% TN reduction needed to protect DO in tidal rivers and restore eelgrass in the bay (45% to protect DO and restore eelgrass in all areas; Trowbridge 2010 Draft Report)
- Even if removed all WWTF effluent, still need to reduce non-point N

Lamprey River Hydrologic Observatory (LRHO) - the Largest Tributary to Great

LR Watershed = 550 km<sup>2</sup>

Google Earth Panoramio.com



### Sites in the Lamprey and Oyster watershed





## Forms of Nitrogen (N)

### **Particulate N**

(Measured Since Oct 2002 - 0.07 mg/L) Attached to sediment and increases with flow; no data on land use

### **Dissolved N**

(Measured since Sept. 1999)

"Reactive" Nitrogen Associated with Human Activity



**Dissolved Organic Nitrogen** (DON; 0.21 mg/L) Associated with wetlands



Use 10+ yrs. of data to examine trends in dissolved N in the Lamprey



## Nitrogen budget for the Lamprey watershed (L73)

#### **Total N Input** (Median 2000-2009) 13.2 kg/ha/yr 81% N Retained (10.72 kg N/ha/yr) Deposition What happens to 81% of the inputs? (7.41)Will high N retention rates continue? **Total N Output** Food (2.88) 2.48 kg N/ha/yr Particulate (0.42) Ag (1.63)**Non-Ag Fert** DIN (0.77) Manure Fert. DON (1.30) (0.90) (0.34)



## N can be lost to the atmosphere (denitrification) in...



### wetlands

### stream channels





riparian zones

Is this a significant component of N retention?



N can be temporarily stored in vegetation and/or groundwater



Will these systems become saturated? What is the lag time for groundwater?

Lamprey groundwater N is higher than stream water N



## Nitrogen budget for the Lamprey watershed (LMP73)

### <u>Total N Input</u> 13.2 kg/ha/yr

Deposition

(7.41)

## (Median 2000-2009)

81% N Retained (10.72 kg N/ha/yr)

- How do the N outputs respond to the human footprint among sub-basins?
- Which inputs become outputs?





## Non-point inorganic N responds to the human footprint – MANAGEABLE

(Nitrate + ammonium in individual Lamprey and Oyster sub-basins with no significant sewage inputs)



### Potential Sources to Manage:

- Septic Systems
- Leaky sewer lines
- Pet waste
- Fertilizers
  - Residential
  - Commercial
  - Recreational
- Atmospheric deposition delivered from impervious surfaces
- Interspersed agriculture
  - Fertilizers
  - Manure



Non-point organic N does NOT respond to the human footprint – NOT MANAGEABLE

(Dissolved organic N in individual Lamprey and Oyster sub-basins with no significant sewage inputs)





# Implications for managing N to reduce loads to Great Bay



Fotal N (tons/yr)

## Total and Manageable N in the Lamprey

### **Total N**

### Non-point sources dominate the problem

### **Manageable N**



~23-30% of non-point N in the Lamprey is potentially manageable



## Lamprey manageable N reduction scenarios

% Reduction to protect DO in tidal river and eelgrass in the bay



More than 50% reduction in manageable non-point N is unlikely; must use available technology to reduce point sources.



# Total and Manageable N in the Oyster

Total N (60.4 tons/yr) - 20% Point, 80% non-point Manageable N (29.2 tons/yr) - 40% Point, 60% non-point



% Reduction to protect DO in tidal river and eelgrass in the bay

~38% of non-point N in the Oyster is potentially manageable



## Not all tributary watersheds are equally amenable to N management





## Key Nitrogen Lessons and Challenges

- Most (81%) of the N imported to the Lamprey watershed never makes it to the stream (or to Great Bay)
- As watersheds urbanize N delivered to streams (and downstream to Great Bay) increases
- Not all forms of non-point N in the stream respond to human activity in the watershed and are therefore manageable
  - DIN responds to human footprint (manageable)
  - DON responds to wetlands not the human footprint (not manageable)
- Uncertainty as to which N sources imported to watersheds become outputs and if some sources are preferentially exported
- Lack of understanding of the controls on long-term watershed N retention
- Legacy of past land use and/or future growth could offset N reduction strategies



# Reduce N Loading in the face of continued population growth?

NH's population is projected to increase by 180,000 persons from 2010 to 2030. Roughly 70% of that growth will occur in the four southeastern counties.

#### Total New Housing 2000-2009



### % Population Change 2010-2030



#### Total Population Increase 2010-2030, 180,000 persons



2010 Population Growth and Land Use Change Report by SPNHF Watersheds projected to experience largest declines in water quality due to increased housing density on private forest lands



- Piscataqua-Salmon Falls watershed ranked highest in the nation
- 3 of the 4 highest
  ranked watersheds
  occur at least
  partially in New
  Hampshire

Insufficient private forest for this analysis

No water quality data

Stein et al. 2009 USDA report "Private Forests, Public Benefits: Increased Housing Density and Other Pressures on Private Forest Contributions"



<u>Moving towards solutions:</u> How do we break down the relationship between population and N?



#### Reduce inputs

- Reduce fertilizer application (ban/tax)
- Reduce air pollution (local and longrange)
- Reduce N imported in food and feed (reduce meat consumption)

### Increase retention or removal

- Improve WWTFs
- Improve new septic systems, retrofit old ones and improve maintenance
- Fix leaky sewer lines and correct illicit discharges
- Improve stormwater management
- Protect and restore vegetated riparian zones



NERRS Science Collaborative Project



Nitrogen <u>Sources</u> and <u>Transport</u> Pathways: Science and Management <u>Collaboration</u> to Reduce Nitrogen Loads in the Great Bay Estuarine Ecosystem







<u>Investigators</u>: Dr. William H. McDowell, Dr. John Bucci, Dr. Erik Hobbie, Dr. Charlie French, Michelle Daley, Jody Potter and Steve Miller



## Non-Point N Questions for Great Bay watershed

- What forms of N respond to human activity?
  - Does organic N or particulate N respond to the human footprint in other Great Bay sub-watersheds?
- Are there "hot spots" of N throughout the watershed?
  - How high are N concentrations?
  - Are concentrations higher than expected?
- What N sources are delivered to the stream? What is the delivery pathway?
  - In the Lamprey, only 19% of the N imported to the watershed makes it to the stream
- How efficient is the stream network at removing N?

### Great Bay Nitrogen Pollution Source Study NH DES - Philip.Trowbridge@des.nh.gov

- Modify the Nitrogen Loading Model<sup>1</sup> (NLM) developed for Waquoit Bay (Cape Cod) to predict nitrogen inputs and outputs for the 40 HUC12 watersheds in the Great Bay watershed.
- Develop custom N inputs and data layers for the NLM.
  - Septic systems (2010 Census blocks and town sewer lines and surveys)
  - Managed turf (municipal turf (e.g. ball fields) and golf course surveys)
  - Residential turf (determined % of developed area that is turf)
  - Agricultural lands (2011 USDA cropland data for fertilizer)
  - Animal feed inputs (2007 census of agriculture, pets registrations)
  - Impervious surfaces (total and directly connected)
  - atmospheric deposition (local and out-of-state sources)
- Modify retention and loss coefficients along flowpath and validate model using measured loads at 8 major tributary stations

<sup>1</sup> Valiela et al. 1997. *Ecological Applications* 7: 358-380.



### In Summary....

- Great Bay is impaired by nitrogen
- Nitrogen issues are complex
- Socioeconomic issues are complex
- Solutions will be equally complex and there is no "silver bullet"
  - Significant reduction in both point and non-point N sources are required
  - Must be innovative
- low impact development and smart growth can help offset population growth



# You can do your part at your own home

- Reduce or eliminate fertilizer
- Inspect, maintain and consider upgrading your septic system
- Install rain garden
- Pick up pet waste
- Support WWTF improvements
- Support land conservation





## Acknowledgments

- Jeff Merriam, Jody Potter for laboratory assistance
- EPA, NH WRRC, NOAA, UNH Agricultural Experiment Station and LRAC for funding
- Graduate students including Paul Proto, Tracey O'Donnell, and Lauren Buoyofsky
- Undergraduates including Rachael Skokan, Jillana Robinson, Heather Gilbert and Liz Holden

### A River, Estuary or Lake is a Reflection of its Watershed

Questions? Michelle Daley mldaley@unh.edu 603-862-1794





## LRHO Nitrogen Research Questions

- 1. Are there *long-term trends* in LRHO stream chemistry?
  - Weekly, storm event stream water N since 1999 at L73
- 2. What is the *N* budget for the LRHO?
  - Quantify N inputs, outputs and retention from 2000-2009
- 3. How do N outputs (and retention) vary for Lamprey and Oyster *sub-basins with different landscape attributes and levels of inputs?* 
  - Quantify N budgets, population density, land use and impervious surfaces for various sub-basins



## Nitrate (NO<sub>3</sub><sup>-</sup>) is increasing in the Lamprey



Increase is associated with increasing human population density







## Dissolved Organic Nitrogen (DON) is decreasing at L73





% Dissolved Inorganic Nitrogen (DIN) is increasing at L73



Nitrogen in the Lamprey River is shifting to the most "reactive" or biologically available form -DIN (NH<sub>4</sub> + NO<sub>3</sub>)

Date (Month Year)



### As Watersheds Urbanize...



### % N Retention Decreases 87% 81% 76% 61%



### Preliminary nitrate Isotope results indicate animal waste source



Nitrate isotope signatures identified by Kendall 1998



# Potential ways to reduce costs of WWTF upgrades

### Improve WWTF land apply effluent to use watershed retention capacity?



### Produce biofuel from WWTFs effluent?



